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Econometrica, Vol. 48, No. 5 (July, 1980) 

INFERENTIAL PROCEDURES IN STABLE DISTRIBUTIONS FOR 
CLASS FREQUENCY DATA ON INCOMES1 

BY HERMAN K. VAN DIJK AND TEUN KLOEK 

This paper discusses inferential procedures for the family of stable distributions, when 
the data are tabulated in the form of interval frequencies. The estimation criteria used are 
minimum chi-square and multinomial maximum likelihood. In evaluating the theoretical 
probabilities corresponding to the intervals, use is made of the inversion theorem for 
characteristic functions. Chi-square tail probabilities for independent samples are pooled 
by means of the Kolmogorov statistic. As an illustration, the methods are applied to Dutch 
and Australian income data. 

1. INTRODUCTION 

IN TWO THEORETICAL ARTICLES in the early sixties [23, 24] Benoit Mandelbrot 
argued that an income distribution follows a so-called Pareto-Levy law, that is, a 
maximally skew, stable distribution with characteristic exponent a between 1 and 
2. So far, this family of distributions has not received much attention from 
empirical econometricians2 due to the estimation problems involved. As a rule, 
the density of a stable distribution cannot be expressed by a simple formula 
involving elementary functions. Instead, the distributions are described by means 
of their characteristic functions. This causes rather serious estimation problems 
which only recently have been solved.3 Most of the estimation methods proposed 
assume the availability of individual point data4 and, hence, cannot be used in case 
the data have the form of interval frequencies. 

The aim of the present paper is to discuss inference methods for the family of 
stable distributions in the case of interval frequency data. We demonstrate the 
possibility of estimating parameters of stable distributions by means of (asymp- 
totically) efficient methods (minimum chi-square and multinomial maximum 
likelihood). We also discuss the possibilities of certain test procedures used for 

1 An earlier and much more extensive version of this paper [36] was presented at the Summer 
Workshop of the Econometric Society at CORE and at the Geneva meeting of the Econometric 
Society, September, 1978. The authors are indebted to several participants for helpful suggestions. In 
addition, we wish to thank two referees for several constructive remarks. Remaining errors are ours. 

2A recent exception is Seastrand [33] who uses a method described in Paulson, Holcomb, and 
Leitch [26] based on point data. A survey of the earlier empirical literature on income distributions has 
been given by Cramer [3]. Some recent contributions can be found in Salem and Mount [32], Singh and 
Maddala [34], and Kloek and van Dijk [15, 16]. 

3Fama and Roll [6] and DuMouchel [4] confine themselves to the case of symmetric stable 
distributions. Press [29], Leitch and Paulson [17], and Paulson, Holcomb, and Leitch [26] include the 
asymmetric case but make use of the sample characteristic function which cannot be computed without 
gross approximation errors in case of interval frequency data. The only alternative to our method, as 
far as we know, is given in DuMouchel [5]. His estimation criterion is derived from information theory, 
while we start from classical criteria, viz. minimum chi-square and multinomial maximum likelihood. 

4The distinction between interval frequency data and individual point data is not exhaustive. There 
is a third interesting possibility when both interval frequencies and interval means are available. In 
such a case more efficient estimation is possible; compare Smith [35]. Application of that approach to 
the family of stable distributions is an interesting possibility for further research. 
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1140 H. K. VAN DIJK AND T. KLOEK 

model selection. Some empirical results are reported in which use is made of 
Australian and Dutch data.5 

The order of discussion is as follows. In Section 2 we summarize the main 
properties of the family of stable distributions; in particular, we discuss the 
interpretation of the parameters. In Section 3 we describe the estimation and test 
procedures proposed. By way of an illustration we present some of our empirical 
results in Section 4. Section 5 contains our conclusions. Some technical details are 
given in the Appendix. 

2. STABLE DISTRIBUTIONS 

The family of stable distributions was first described by Levy.6 The simplest way 
to describe what is meant by the term stable is the following. Let X1 and X2 denote 
independent random variables with a common distribution (apart from location 
and scale parameters). If their sum X1 + X2 has the same distribution (apart from 
location and scale)7 we say that this distribution is stable.8 Well-known examples 
are the normal and Cauchy distributions. In most other cases characteristic 
functions are the most convenient way to describe stable distributions. Such a 
characteristic function k (t) can be written in the form9 

(1) ln IS(t) = ln E(eitX) = iat -A ItIa exp {2iiry sgn (t)} 

for -oo <a < oo, A > , 0 <o a s2 and c} 3 1, |y| S- 1 -|11-a|1. 
The interpretation of the parameters is as follows: 
(i) a is a location parameter. If 1 < a - 2 the mean exists and equalsl0 a. 
(ii) Let A = 3a, with 3 > 0. Then 3 is a scale parameter of the distribution of 

(X - a). The variance only exists in the particular case a = 2; it then equals 232. In 

5More extensive empirical evidence is given in van Dijk and Kloek [36]. 
6 See Levy [18]. Discussions of its properties may als6 be found in Gnedenko and Kolmogorov [8], 

Lukacs [20], Loeve [19], and Feller II [7]. A much more concise, but clear discussion is given by Press 
[30]. 

From now on we shall omit this qualification. 
8 Mandelbrot's argument leading to a stable distribution for incomes is based on the fact that the 

various income concepts are related to one another by addition: total income of a person may be 
obtained by adding income from various sources and family income by adding the incomes of the 
members of the family. Mandelbrot [23, pp. 85, 86] assumes that all these types of income (both 
components and aggregates) follow the same type of distribution (this need not be true for all 
countries; compare Kestenbaum [13]). If one adds an independence assumption, the straightforward 
consequence is that incomes must follow a stable distribution. The independence assumption is not 
always realistic, as a referee rightly remarked. However, an obvious generalization for the case of 
dependent stably distributed random variables runs as follows. Let X1 and U be independent random 
variables with a common stable distribution and let X2 = OX1 + U. Then X1, X2 and X1 + X2 have the 
same stable distribution, while X1 and X2 are dependent. 

9 Apart from the case a = 1, in which another expression is available, this formula describes all 
possible stable distributions. The representation adopted here follows Lukacs [20, p. 137], with the 
exception of the sign of y. Some other authors give different representations. Transformation formulas 
describing the transition from one representation to another are also given by Lukacs. The mean and 
the characteristic exponent are the same in all representations. The differences refer to scale and 
skewness only. It should be noted that the characteristic function (1) also defines distributions in the 
case a > 2, but these do not have the stability property mentioned above. 

10 This property is given little attention in the literature. See [8, p. 182] and [7, pp. 215 and 528]. 
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that case the distribution is normal. In all other cases the variance is infinite. 
Nevertheless 8 plays the role of a scale parameter in the sense that, if X has a 
stable distribution, X* = (X - a)/8 has a standard stable distribution which 
depends on a and y, but is independent of a and 8. 

(iii) y is a skewness parameter. If 1 <a -,< 2, we have 'y1 I 2 - a. If y = 0, the 
distribution is symmetric. If y = 2- a, the distribution has maximal positive 
skewness. According to Mandelbrot [23] this restriction defines the relevant 
subfamily for the description of income distributions. His argument is that 
otherwise the probability that income is negative will be too large [23, pp. 86, 87]. 
He introduced the term Pareto-Levy distribution to distinguish this subfamily. 
Notice that no skewness can occur for a = 2 and that the possibilities for skewness 
are limited for a values close to two. 

(iv) a is called the characteristic exponent. It characterizes the tails. For large 
values of x the density approximates the Pareto density f(x) = axl/xa+l (if x > xo) 
with the same parameter a. As in the case of the Pareto distribution the stable 
distributions have no first- or higher-order integer moments for 0 < a S 1; for 
1 <a <2 the first-order moment exists, but the second does not."1 Graphical 
illustrations of the densities of three standard Pareto-Levy distributions for 
a = 1.2, 1.5, and 1.8 can be found in Mandelbrot [23, p. 88]. It is seen that the 
right-hand tail is heavier as a is smaller. This is in accordance with the facts that 
the light-tailed Normal family is a subfamily of the stable family with 'y = 0, a = 2, 
and that the heavy-tailed Cauchy family is another subfamily with 'y =0, a = 1. 

So far, we considered the distribution of income itself. There is, however, 
another possibility, suggested by the fact that the normal family is a particular 
subfamily of the stable family. And the normal family has often been proposed to 
describe the distribution of log income. The underlying theoretical models usually 
interpret the level of log income as a sum of independent random shocks on which 
the central limit theorem can be applied (see [3, Chapter 4] and the references 
cited there). Empirical results suggest that the lognormal family is not flexible 
enough to fit the data (see [1, 3, 35]). Our own earlier results [15, 16] point in the 
same direction. So, an obvious generalization is to replace the normal dis- 
tributions in the random shock models for log income by stable distributions, since 
the central limit theorem has been generalized for this class of distributions. This 
leads to the hypothesis that income follows a log stable distribution, or 
equivalently that log income follows a stable distribution. The latter need not be 
positively skewed. It may also be symmetric or negatively skewed. The inter- 
pretation of the parameters is the same as above if we consider the distribution of 
log income. If we define a geometric mean (GM) for the continuous case by 
GM(y) = exp (E(log y)), exp (a) may be interpreted as the geometric mean of 
income. 

Finally, we discuss the problem of inequality measures. If one describes an 
income distribution by a set of parameters, the question may be raised whether 
one of them can be interpreted as a measure of inequality. For the family of stable 

11 Unlike the case of the Pareto distribution, the second-order moment does exist for a = 2. 
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distributions in general this is a complicated problem as inequality is influenced by 
8, a, and 'y. The Pareto-Levy case allows a simplification since y = 2 - a, and a 
further simplification is possible by comparing two Pareto-Levy distributions with 
the same12 a. In that case the ratio 8/a of the scale parameter 8 and the mean a is a 
straightforward measure of relative inequality. In such a comparison it is propor- 
tional with several traditional measures such as the relative mean deviation and 
the Gini coefficient of concentration. For the log stable family the situation is 
similar, but not quite the same. The simple comparison in this case is between two 
distributions with the same13 a and y. In that case the scale parameter a has the 
interpretation of a relative inequality measure. 

3. INFERENTIAL PROCEDURES 

In this section we describe the estimation and test procedures used. Our first 
problem is to estimate the parameters of stable distributions when the available 
data are of the class frequency type. Thus our starting point is a random sample of 
n individual observations on income which are recorded as frequencies14 cor- 
responding to m mutually exclusive and exhaustive income intervals. The limits of 
these intervals are supposed to be exogenously given.15 

As in our earlier papers [15, 16] we apply two estimation criteria: minimum 
chi-square (MCS) and multinomial'6 maximum likelihood (MML). Both cri- 
terion functions depend on the parameters via the theoretical probabilities of the 
income classes. The estimates are computed by means of numerical optimization 
and the probabilities by numerical integration. As no closed form for the density is 
available, this integration is based on the inversion theorem for characteristic 
functions. Details are given in Appendix A. Both estimation methods are consis- 
tent and asymptotically efficient17 [31, pp. 352, 363]. For large samples the two 
methods are equivalent [12, p. 438]. Most of the samples we studied in our 
applications [36] were large enough to yield estimates from both methods which 
are not far apart. 

The MCS method is linked to the chi-square test for goodness of fit. Since the 
chi-square values are not comparable if the numbers of degrees of freedom are 
different, we compute the corresponding tail probabilities,18 which are compar- 
able. The joint hypothesis that a number N of independent data sets have been 
drawn from distributions belonging to the same family can be tested by adding the 

12 Our empirical evidence [36] suggests that for most Pareto-Levy cases studied the hypothesis 
a = 1.5 can be accepted at least at the 0.01 level. 

13 In many of our empirical examples, the hypothesis a = 1.8, y = 0 can be accepted. 
14 Such frequencies need not be the result of grouping of individual point data. See footnote 25. 
15 In our application this is true for most intervals, but in the tail classes some endogenous pooling 

was necessary. We discussed this problem in [15, Section 4]. 
16 For a discussion of the distinction between ordinary ML and MML, see [12, p. 457]. In this 

context, see also [2, 31]. 
17 According to Rao's criterion of second-order efficiency MML is to be preferred [31, pp. 348 

and 353]. 
18 In [15, 16] we used the term "critical level" for the same concept. Harrison [10] uses the term 

"marginal significance level." 
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chi-square values and at the same time adding the numbers of degrees of freedom. 
The results obtained in this way appear to be highly sensitive to outliers. So we 
experimented in [36] with the Kolmogorov test [12, pp. 468-476]. More pre- 
cisely, we used D+ = supx {SN(X) - x} where SN(x) is the empirical distribution 
function of the chi-square tail probabilities (x). This statistic appears to be 
somewhat less sensitive to one subgroup having a different distribution than the 
others. Such a situation can easily occur due to institutional peculiarities or to 
errors of measurement. For that reason one should avoid rejecting a hypothesis 
which is acceptable for N- 1 cases but not for the Nth. The Kolmogorov statistic 
is based on the tail probabilities mentioned above. Under the null hypothesis, 
these are asymptotically uniformly distributed on the interval (0, 1). So the test is 
an approximate one. 

The ML method for the parametric version of the multinomial model has been 
extensively discussed by Rao [31, pp. 359-366]. We use minus the inverse of the 
Hessian of the log likelihood as an approximation for the covariance matrix.19 
This is simpler from a programming point of view than computing the covariance 
matrix of the MCS estimates.20 

In our empirical applications we give special attention to the right hand tail 
classes of the distributions. Consider the null hypothesis that the log stable family 
is the correct family to be used. Let the disturbances be denoted by Es= 

ni - np1(O), where 0 is the unknown true parameter vector. Then E1n 2 is asymp- 
totically normally distributed with zero mean and variance -= pi(1 -pi). Let 
Tj= E/ljn2 denote a standardized disturbance. If we average a number m of 
independent standardized disturbances we have (approximately) a normal 
random variable with zero mean and variance 1/m. This procedure may be 
applied to the tail disturbances for mutually exclusive samples, which are 
independent by assumption. In practical applications we replace the disturbances 
by the observed residuals. This amounts to an additional approximation, so that 
the results will have to be interpreted with caution if the sample sizes are moderate 
or small. 

If the stable hypothesis is correct for income, the density of the implied 
distribution for log income has an exponential tail and finite moments. Under the 
log stable hypothesis, on the contrary, it has infinite variance (if a < 2). So, if the 
stable hypothesis is correct, one might expect that the log stable density will 
produce too large theoretical probabilities and hence negative residuals in the 
right hand tail class. An analogous argument may be given for the log stable null 
hypothesis. 

19 The standard errors in [36] show a great deal of variability. (There is one notable exception: the 
standard errors for the scale parameter 8 of the log stable distribution are uniformly very small.) From 
the theory of linear estimation we know that standard errors tend to be smaller as the fit is better, the 
sample size is larger, and the degree of multicollinearity is smaller. When we compare the (relative) size 
of the standard errors with the tail probabilities (a measure of goodness of fit) and the sample sizes, we 
see that we need the analogue of multicollinearity to explain the results. Compare [36, Section 5] and 
[16, Section 5]. 

20 The latter is a particular case of minimum distance estimation [22, Chapter 9], as is shown in [11, 
pp. 355-356]. 
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So far we have concentrated on null hypotheses and (hence) on type I errors. Of 
course, it is more satisfactory to consider alternative hypotheses and type II errors 
as well. The Cox test is a good way to do so. We have given some examples of 
experiments with the Cox test in [16, Section 5]. In these cases the Cox test largely 
produced the same conclusions as the simple chi-square test. Given the compli- 
cations inherent to the stable family, application of the Cox test to the present 
problem would entail a computationally very heavy burden. 

Finally, we make a few remarks about measures for goodness of fit in models 
of the present type.21 Of course, the chi-square values measure relative good- 
ness of fit: the fit is better as chi-square is smaller, apart from corrections for 
degrees of freedom. There is an implicit correction in the computation of the tail 
probabilities: the fit is better as the tail probability is greater. It is true that for a 
correctly specified model the tail probability is as likely below 0.5 as above it. But 
if model A is correctly specified, while model B is not, the tail probability of B will 
likely be less22 than that of A. Of course one could try to construct some analogue 
of R2. But since the model n1 = np1(O) + Ej has no constant term one has to face the 

23 
same problems as in linear models with no constant term. 

4. SOME EMPIRICAL RESULTS 

We have applied the methods described in the previous section to Dutch and 
Australian data. Extensive results have been presented in [36].24 For considera- 
tions of space we shall confine ourselves to a brief description. 

The Dutch data were taken from samples drawn in 1973. The income concept 
measured is gross income,25 while families with two or more income earners were 
left out of consideration. The sample was subdivided into four occupation groups. 
For the data and for more comments, we refer to [15]. The Australian data were 
published and discussed in [27]. They formed the basis for our earlier study [16], 
where different theoretical distributions were considered. The data originate from 
a survey of consumer expenditure and finances in 1966-1968 and the income 
concept measured is family disposable income. They have been partitioned in 
several ways, namely, according to age, occupation, education (of the head of the 
family), and family size. 

A simple way to give summary descriptions for goodness of fit of the Pareto- 
Levy and log stable families is by means of the Kolmogorov statistic, which was 
briefly discussed in Section 3. The results are presented in Table I. The cor- 
responding results for the log t and the Champernowne families, reported in our 

21 Several discussants of the first version and a referee asked for R values. 
22 We shall not try to spell out a formal proof of this statement. The situation is, however, in a sense 

analogous to that in [14] where a similar statement is proved for the linear model. 
23 Compare Maddala [21, p. 108]. 
24 This paper is available from the authors on request. 
25 It is interesting that the respondents were shown a list containing a set of intervals and that the 

question asked was: Could you indicate the interval to which your income belongs? It was felt that such 
a procedure results in a larger number of correct answers. This advantage may offset to some extent the 
efficiency loss in estimation due to censoring; compare DuMouchel [5]. 
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TABLE I 

KOLMOGOROV STATISTICS 

c 

Pareto- Log Critical ValuesC 
Data N Levy Stable Log t Champernowne 5 per cent I per cent 

1. Dutch Occupations 4 .409 .556 .553 .514 .565 .689 
2. Australian Age groups 9 .478a .306 .534 .475a .387 .480 
3. Australian Occupations 7 .492a .460a 548b .53Oa .436 .538 
4. Australian Occupationsd 6 .421 .412 .500a .482a .468 .577 
5. Australian Educations 7 .468a .417 .676b .525a .436 .538 
6. Australian Family sizes 3 .967b .339 .625 .746a .636 .785 

a Rejected at a five per cent level of significance, with sample size N, in a one sided test. 
b Rejected at a one per cent level of significance. 
c See [25]. Note that our statistic is denoted there by D,. 
d In this case, one group ("not in work force") is deleted. 

earlier papers [15, 16] are presented for comparison. It is seen from Table I that 
the log stable family is rejected only once in the Kolmogorov tests. This is due to 
an extremely poor fit of one occupation group which can be identified as the group 
consisting of people not in the work force. When this group is deleted and the 
third line of Table I is replaced by the fourth, it is seen that the log stable 
hypothesis is never rejected, while all other families are rejected several times. It is 
also seen from Table I that in all cases but one the log stable family yields better fits 
than the other families. In the pooled right-hand tail residuals test, described in 
Section 3, all results were insignificant under the log stable null hypothesis, while 
the Pareto-Levy hypothesis was rejected for the Australian occupations and 

26 
family sizes. Closer inspection of the residuals shows that in all seven cases 
where the chi-square tail probability was less than two per cent, the residuals of 
the highest income class were negative, while almost all residuals of the second, 
third, and fourth highest income classes were positive. This looks like rather strong 
evidence in favor of the log stable family. 

The point estimates for a in the Pareto-Levy case were between 1.35 and 1.68 
for most of the data sets, but markedly lower for the Dutch self-employed and 
old-aged. Probably these groups are more heterogeneous than most other groups 
considered. For the log stable family most of the point estimates for a were 
between 1.62 and 1.90, which is larger than in the case of the Pareto-Levy family 
(as was to be expected) but smaller than the limiting case a =2, where the 
distribution is lognormal. Since the lognormal family is a subfamily of the log 
stable family, a likelihood ratio test could be applied. The lognormal hypothesis 
was rejected in twenty one cases out of thirty one. 

5. CONCLUSIONS 

In this paper we demonstrated the possibility of estimating the parameters of 
stable distributions when the data are tabulated in the form of class frequencies. 

26 See [36, Table I and Appendix B]. 
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We emphasized the methodological aspects. For detailed empirical results 
reference is made to [36]. 

To estimate the parameters of the fitted distributions we made use of the 
inversion theorem for characteristic functions. 

The problem of ascertaining which of the laws fit income better was treated by 
making use of chi-square tail probabilities and Kolmogorov statistics. 

No distribution uniformly gave the best fit but the Pareto-Levy did reasonably 
well and the log stable family gave the best fit in the larger number of cases.27 

Erasmus University Rotterdam, The Netherlands. 

Manuscript received August, 1978; revision received July, 1979. 

APPENDIX 

SOME TECHNICAL DETAILS OF THE ESTIMATION METHOD USED 

Let x denote either income or log income and (gd, hi) the fth interval. We are interested in the 
computation of the theoretical probabilities 

(2) pi(6) = P[g : x < hi]. 

These can be obtained from the characteristic function by means of Ihe inversion theorem. Dropping 
subscripts one obtains 

(3) () = 1 I {(et - e th).(t)} dt; 

see [19, p. 188]. This expression can be rewritten as 

X1 
(4) P(0) - exp (-A1(t))[sin A2(h, t) -sin A2(g, t)] dt 

where 

(5) A1 (t) = (St)' cos 2-T_Y 

(6) A2(h, t) = ht - at + (5t)a sin 1-7r'y. 

The numerical evaluation of (4) was carried out by making use of standard numerical integration28 on t. 
The computed probabilities pi(0) are used in the evaluation of the chi-square and likelihood 

criterion functions. For optimization we made use of a direct search procedure due to Powell29 [28]. 
This is an unconstrained optimization method. Since the parameters a and y are restricted we made 
use of the transformations 

(7) a=1?+cosa*l, y=(2-a)cosy*, 

where a* and -y* can take any real value. So the search procedure was done on a* and -y*. 

27 More or less similar results for American point data were found by Seastrand [33]. 
28 We also tried the Bergstrom-Feller series expansions (see [20, Theorem 5.8.2] or [7, XVII, 6 

Lemma 1]) but these turned out to give considerable approximation errors for low values of a and high 
values of the standard variable X* = (X - a)/5. 

29 Given the availability of a subroutine for Powell's method, this choice has the advantage that it 
saves programming time, since only the maximand is required, not its derivatives. Other optimization 
methods may lead to saving CPU time. This trade-off may lead to different decisions under different 
circumstances. 
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Standard errors of the estimates were determined by evaluating minus the inverse of the Hessian of 
the log likelihood function; compare [31, p. 366]. The evaluation of the Hessian was done numerically 
by means of the finite difference method [9, pp. 18-21]. 

The results obtained in this paper required a fair amount of computer time. We think that due to 
expected improvements in both computer technology and software the cost of computations like these 
will rapidly decrease. 
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